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Abstract
Goodness-of-fit procedures are introduced for testing the validity of compoundmodels.
New tests that utilize the Laplace transform as well as classical tests based on the
distribution function are investigated. A major area of application of compound laws
is in insurance, to model total claims resulting from specific claim frequencies and
individual claim sizes. Monte Carlo simulations are used to compare the different test
procedures under a variety of specifications for these two components of total claims.
A detailed application to an insurance dataset is presented.
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1 Introduction

Consider the random sum of random variables,

X =
N∑

k=1

Uk, (1)
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where N is a count random variable with probability mass function pN and the
Uk’s form a sequence of independently and identically distributed (iid) non-negative
continuous random variables having a distribution function (DF) FU , and independent
of N .

Such “compound” random variables defined in (1) come up in many practical
applications and have different interpretations depending on the context. Our focus
here is to consider this compound variable X as the total amount of claim associated
with a non-life insurance portfolio over a fixed time period. The random variable N
represents the claim frequency while theUk’s represent the individual claim sizes. The
final objective of practitioners is to identify the components of this quantity defined
in (1), i.e. identify the distribution of the claim frequency N and that of the individual
claim sizesU . We will work under the assumption that the correspondence between X
and the DF’s for N and Uk’s within model (1) as being unique and demonstrate that it
works inmany practical situations, although theremay be few exceptions in theory.We
note that incomplete data situations, such as these where one has only observations
on the total claims X , arise in practice when an insurance company keeps track of
only aggregated data by the month, the quarter, or the year. The methodology can
also be useful to a reinsurance company, which has only access to partial information
on X , and would like to better understand the underlying risk and improve the rate-
making. Model (1) is also useful in the banking industry which has only access to data
on annualized operational risk. As pointed out in Chaudhury [6], the data available
to assess operational risk are typically incomplete as banks often report aggregate
losses, often discarding small losses. Such loss of information also occurs when data
are merged say after the acquisition of another banking operation.

Assume we observe aggregated claim sizes X1, . . . , Xn , and we wish to assess the
conformity of a given compound model in the composite situation whereby the DF’s
involved depend on unknown parameters. Specifically we write pN := pN (·;ϑN ) and
FU := FU (·;ϑU ), for the component DF’s with the parameter vector ϑ = (ϑN , ϑU )

treated as unknown. If F X denotes the DF of the compound r.v. X , we wish to test the
composite null hypothesis

H0 : The DF of X in (1.1) is F X
0 ≡ F X

0 (·;ϑ), for some ϑ ∈ �, (2)

where � denotes an appropriate parameter space.
Two types of nonparametric goodness-of-fit (GOF) tests are considered. The first

type is based on a dissimilarity measure between the population DF and the empirical
DF of the available data; see e.g.D’Agostino and Stephens [9], or Thas [37] for reviews
on the subject of DF-based GOF tests. Since the random variable X typically has a
point mass at 0 corresponding to N = 0, the standard Kolmogorov-Smirnov (KS)
and Cramèr-von Mises (CvM) GOF tests need some corresponding modifications.
Although these procedures are originally meant to handle continuous data, extensions
have been proposed to assess the adequacy for discrete, grouped, or mixed data, see
for instance Schmid [30], Walsh [39], Noether [27], Slakter [31], Conover [8], Gleser
[16], and Dimitrova et al. [10] for the KS GOF test. Regarding the CvM criterion,
the reader is referred to the works of Choulakian et al. [7], Henze [19], Spinelli and
Stephens [33], Spinelli [32] and Lockhart et al. [24]. We propose modified estimators
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of theKS and CvM test statistics that take care of the point mass at 0 and also address
the lack of closed form expression for the DF of X .

A second group of procedures we employ here measure the model discrepancy in
terms of the distance between the population Laplace transform (LT) and the empir-
ical LT. Statistical tests involving this approach work directly with transform-based
statistics, thus avoiding LT inversion which is often complex and costly. These meth-
ods are quite convenient in cases where the DF is complicated while the LT is readily
available. Such methods are relatively new but since their introduction, they have been
used in various estimation and testing problems; see for instance Henze [18], Henze
and Klar [20], Henze and Meintanis [21], Meintanis and Iliopoulos [25], Besbeas and
Morgan [4], Ghosh and Beran [14], Milošević and Obradović [26], and Allison et al.
[2].

The test statistics involved in these procedures lead to non-standard asymptotic
distributions for which finding critical values requires sophisticated numerical meth-
ods. Moreover, due to the fact that the parameters of the null distribution have to be
estimated a priori, the tests are not distribution free. We overcome these difficulties
using a parametric bootstrap approach, which has gained popularity in approximating
the null distribution in goodness-of-fit testing.

The paper is organized as follows. Section 2 provides a brief background on com-
pound distributions and reviewsmoment-based estimation of the parameters. Section 3
details the goodness-of-fit testing procedures tailored to the distribution of aggregated
claim sizes. Section 4 reports the results of a Monte Carlo simulation study conducted
to compare of the GOF tests in terms of power. Section 5 presents an application of
our GOF procedures to a real dataset from the insurance industry. We conclude with
discussion in Sect. 6. Asymptotic results are contained in the Appendix.

2 Preliminaries

2.1 Compound Distribution

Recall that X = ∑N
k=1 Ui , where N is a counting rv with probability mass function

pN and the Uk’s are iid non-negative continuous random variables with DF FU , and
independent of N . Given the fact that N can take the value zero with probability
pN (0), the DF of X is given by

F X (x) = pN (0) +
[
1 − pN (0)

]
F X |N>0(x), x ≥ 0, (3)

where F X |N>0 denotes the DF of X provided that N > 0. Note that the conditional
probability distribution of X |N > 0 is continuous. The Laplace transform (LT) of X ,
defined as L X (t) := E(e−t X ), may be expressed as

L X (t) = G N
(

LU (t)
)

, t ≥ 0, (4)
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where G N (t) := E(t N ) denotes the probability generating function of N and LU is
the LT of the claim size distribution.

We let the distribution of the claim sizes be quite general (apart from its parametric
form), but model the claim frequency via a counting distribution from the broad class
viz. Katz family. Recall that the distribution of N belongs to the Katz family [23],
written N ∼ KF(a, b), if the probability mass function satisfies the recursive equation

pN (k) =
(

a + b

k

)
pN (k − 1), for k ≥ 1. (5)

A characterization is given in Sundt and Jewell [35]. Prominentmembers of this family
(5) include

1. The binomial N ∼ Bin(α, p) (α ∈ N, 0 < p < 1) which satisfies (5) with
a = −p/(1 − p) and b = (α + 1)p/(1 − p).

2. The Poisson N ∼ Pois(λ) (λ > 0) which satisfies (5) with a = 0 and b = λ.
3. The negative binomial N ∼ Neg-Bin(α, p) (α > 0, 0 < p < 1) with probability

mass function

pN (k) = �(α + k)

�(α)�(k + 1)
pα(1 − p)k, for k ≥ 0, (6)

which satisfies (5) with a = 1 − p and b = (α − 1)(1 − p).

These discrete distributions are commonly used to model claim frequencies and this
choice seems quite general and justified.

Throughout this paper, we will denote by n0 ≤ n the number of zeros and by
X+
1 , . . . , X+

n−n0 the nonzero values within the sample X1, . . . , Xn .

2.2 Moments Based Estimation for Aggregate Claims

The Method of Moments estimator is obtained by matching the empirical moments
with the theoretical moments of the parametric model. If N ∼ KF(a, b), then the
moments of X may be expressed in terms of the moments of U via the recursive
relations

(1 − a)E
(

Xk+1
)

=
k∑

i=0

(
k

i

)(
k + 1

i + 1
a + b

)
E

(
Ui+1

)
E

(
Xk−i

)
, for k ≥ 0 ,

(7)

provided in De Pril [29, Equation 3]. Solving the system (7) for ϑN = (a, b) and ϑU

yields the Method of Moments Estimators (MMEs).

Denote by X̄ = n−1∑n
i=1 Xi and mk = n−1∑n

i=1

(
Xi − X̄

)k
the sample mean

and the sample centeredmoments of order k ≥ 2, respectively. The following examples
provide expressions for theMMEs in the geometric-exponential, Poisson-exponential,
and Poisson-gamma cases:
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Example 1 1. (geometric-exponential): Assume that the claim sizes follow an expo-
nential distribution, U ∼ Exp(θ), and that the claim frequency is geometric
N ∼ Neg-Bin(1, p). Thus, we have that a = 1 − p, b = 0, in the Katz fam-
ily parametrization in (5). Substituting in (7) and solving yields the parameters
estimates

θ̂ = m2 − X̄2

2X̄
and p̂ = θ̂

θ̂ + X̄
. (8)

2. (Poisson-exponential): Assume a Poisson frequency for N ∼ Pois(λ), with claim
size following an exponential distribution U ∼ Exp(θ), with density

f U (x) = 1

θ
e−x/θ , for x ≥ 0. (9)

The Poisson distribution with parameter λ corresponds to a = 0, b = λ in the Katz
family parametrization in (5), while for the exponential distribution with parameter
θ we have, E(U ) = θ , and E

(
U 2
) = 2θ2. Substituting in (7) and solving yields

the parameter estimates

θ̂ = m2

2X̄
and λ̂ = 2X̄2

m2
. (10)

3. (Poisson-gamma): Assume that the claim sizes follow a gamma distribution, U ∼
gamma(r , θ), with density

f U (x) = e−x/θ xr−1

θr�(r)
, for x ≥ 0. (11)

Let the claim frequency be Poisson distributed N ∼ Pois(λ). We have that a = 0,
b = λ, E(U ) = rθ , E

(
U 2
) = r(r + 1)θ2, and E

(
U 3
) = r(r + 1)(r + 2)θ3.

Substituting in (7) and solving yields the parameters estimates

r̂ = 2m2
2 − m3 X̄

m3 X̄ − m2
2

, θ̂ = m2

X̄ (̂r + 1)
, and λ̂ = X̄

r̂ θ̂
. (12)

Remark 21 The estimates of the parameters in Examples (8) and (12) may turn out
to be negative due to the lack of fit of the model. The partial Method of Moments
presented below often resolves this difficulty.

The “partial Method of Moments" idea is as follows: whenever the data consist of
one or more Xi that take the value zero, i.e. n0 > 0, consider adding to the system of
equations (7), an additional estimation equation corresponding to the probability of
this event. If N ∼ Bin(α, p) or N ∼ Neg-Bin(α, p), it is given by

pN (0) = pα, (13)
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and when N ∼ Pois(λ), it is

pN (0) = e−λ. (14)

This probability that N = 0 is estimated by p̂N (0) = n0/n. The parameters of the
claim sizes distribution follow from the other MME equations. The resulting esti-
mates are referred to as partial Method of Moments Estimators (partial-MMEs) in the
remainder. The following example provides the expressions of the partial-MMEs in
the geometric-exponential, Poisson-gamma and Poisson-inverse Gaussian cases.

Example 2 1. Assume that the claim frequency is geometric N ∼ Neg-Bin(1, p), then
b = 0 and a = 1 − p, and p is estimated via

p̂ = n0

n
,

and if the claim sizes are exponentially distributedU ∼ Exp(θ), then θ is estimated
via

θ̂ = p̂ X̄

1 − p̂
.

Hence, the partial-MME cannot be negative in the geometric-exponential case.
2. Assume that the claim frequency is Poisson distributed N ∼ Pois(λ), then a = 0

and b = λ, and λ is estimated via

λ̂ = − log
(n0

n

)
,

and if the claim sizes are gamma distributed U ∼ Gamma(r , θ), then using (7),
the Gamma parameters are estimated via

r̂ = X̄2

λ̂m2 − X̄2
and θ̂ = X̄

λ̂̂r
. (15)

These estimators do not involve the third order moment anymore, and if λ is in a
reasonable range (λ > X̄2

m2
) , their values will be non-negative.

3. Assume that the claim frequency is Poisson distributed N ∼ Pois(λ), then a = 0
and b = λ, and λ is estimated via

λ̂ = − log
(n0

n

)
.

Let the claim sizes be inverse-Gaussian distributed U ∼ IG(μ, φ), with density

f U (x) =
(

1

2πx3φ

)1/2
exp

[
− (x − μ)2

2μ2φx

]
, x > 0. (16)
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Substituting in (7) and solving yields the parameter estimates

μ̂ = X̄

λ̂
and φ̂ = λ̂m2 − X̄2

X̄
. (17)

3 Goodness-of-Fit Tests for Aggregate Claims

3.1 Tests Based on the Distribution Function

As alreadymentioned, aDF-basedGOF test compares the populationDF F X
0 (x;ϑ) =

P0(X ≤ x
∣∣ϑ), x ∈ R, to its empirical counterpart, the empirical DF, defined by

F X
n (x) = 1

n

n∑

i=1

I(Xi ≤ x). (18)

Note that the empirical DF may be rewritten as

F X
n (x) = n0

n
+ n − n0

n
F X |N>0

n (x),

where F X |N>0
n denotes the empirical DF of X given that N > 0, which can be

estimated via

F X |N>0
n (x) = 1

n − n0

n−n0∑

i=1

I(X+
i ≤ x). (19)

We estimate the population DF as F̂ X
0 (x) := F X

0 (x; ϑ̂) where ϑ̂ = ϑ̂(X1, . . . Xn)

is some asymptotically efficient estimator. As we assumed that the distribution of N
belongs to the Katz family, the population DF may be approximated via the so-called
Panjer algorithm, see [28] for more details.

3.1.1 Kolmogorov-Smirnov Test for Compound Distributions

The Kolmogorov-Smirnov GOF test employs the distance

KS
(

F X
0 , F X

n

)
= √

n sup
x∈(0,∞)

|F X
0 (x) − F X

n (x)| := √
n sup

x∈(0,∞)

DKS
n (x). (20)

Denote by X+
1:n−n0

, . . . , X+
n−n0:n−n0 , the order statistics associated with the sample

X+
1 , . . . , X+

n−n0 , and define the intervals Ii = [X+
i :n−n0

, X+
i+1:n−n0

) for i = 0, . . . , n−
n0, with the convention X0:n−n0 = 0 and Xn−n0+1:n−n0 = ∞ . Then for x ∈ Ii ,

DKS
n (x) =

∣∣∣∣
n0 + i

n
− F X

0 (x)

∣∣∣∣ , i = 0, . . . , n − n0,
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so that

sup
x∈Ii

DKS
n (x) = max

[
n0 + i

n
− F X

0

(
X+

i :n−n0

)
, F X

0

(
X+

i+1:n−n0

)
− n0 + i

n

]
.

Considering successively the intervals Ii , we estimate the KS distance (20) by

KSn = max (D−, D+) ,

where

D− = max
0≤i≤n−n0

n0 + i

n
− F̂ X

0

(
X+

i :n−n0

)
, and D+ = max

0≤i≤n−n0
F̂ X
0

(
X+

i+1:n−n0

)
− n0 + i

n
.

3.1.2 Cramér-vonMises Test for Compound Distributions

The Cramér-von Mises GOF test uses the criterion

CM
(

F X
0 , F X

n

)
= n

∫ +∞

0

[
F X
0 (x) − F X

n (x)
]2

dF X
0 (x). (21)

Given the mixed nature of the distribution of X , the probability measure follows from
differentiation in (3) with

dF X
0 (x) = pN

0 (0)δ0(x) +
[
1 − pN (0)

]
dF X |N>0

0 (x), x ≥ 0, (22)

where δ0(x) denotes the Dirac measure at 0. Reinserting (22) into the integral (21)
yields

CM
(

F X
0 , F X

n

)
= n

{
pN (0)

[
pN (0) − n0

n

]2

+
[
1 − pN (0)

] ∫ +∞

0

[
F X
0 (x) − F X

n (x)
]2

dF X |N>0
0 (x)

}

. (23)

Because the non-negative data points X+
1 , . . . , X+

n−n0 are assumed to be distributed

as F X |N>0
0 under the null hypothesis, we can write the integral in (23) as

[
pN (0) − n0

n

] [2
n

n−n0∑

i=1

F X |N>0(X+
i ) − n − n0

n

]

+
∫ +∞

0

{
[1 − pN (0)]F X |N>0

0 (x) − n − n0

n
F X |N>0

n (x)

}2
dF X |N>0(x).

(24)
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By expanding the square and applying the change of variable u = F X |N>0(x), the
integral (24) may be rewritten as

[1 − pN (0)]2
3

− [1 − pN (0)]n − n0

n

1

n − n0

n−n0∑

i=0

[1 − F X |N>0
0 (X+

i )2]

+
(

n − n0

n

)[
n − n0 +

n−n0∑

i=0

(1 − 2i)F X |N>0
0 (X+

i :n)

]
. (25)

Finally combining (23), (24) and (25) allows to estimate the CvM statistics as

CMn = n

(
p̂N
0 (0)

[
p̂N
0 (0) − n0

n

]2

+
[
1 − p̂N

0 (0)
]{[

p̂N
0 (0) − n0

n

] [2
n

∑

i=1

F̂ X |N>0
0 (X+

i :n) − n − n0

n

]

+ [1 − p̂N
0 (0)]2
3

− [1 − p̂N
0 (0)]n − n0

n

1

n − n0

n−n0∑

i=0

[1 − F̂ X |N>0
0 (X+

i )2]

+
(

n − n0

n

)[
n − n0 +

n−n0∑

i=0

(1 − 2i)F̂ X |N>0
0 (X+

i :n)

]})
, (26)

where F̂ X |N>0
0 (x) := F X |N>0

0 (x; ϑ̂) and p̂N
0 (0) := pN

0 (0; ϑ̂N ) is the parametric
estimator of the probability that N = 0 under the null hypothesis.

3.2 Tests Based on the Laplace Transform

LT-based GOF tests are based on a distance between the LT L X
0 (t;ϑ) :=

E0(e−t X |ϑ), t > 0, (we often write L X
0 (t) for simplicity) corresponding to the null

hypothesis, and its empirical counterpart, the empirical LT, given by

L X
n (t) = 1

n

n∑

i=1

e−t Xi .

Typically, such a test statistic is expressed as an integrated distance between L X
n (t)

and L X
0 (t) involving a weight function w(t) > 0, t ≥ 0. The main motivation of the

LT approach lies in tractability of the LT L X
0 (·), given by (4). Two approaches are

described in Sects. 3.2.1 and 3.2.2.
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3.2.1 L2 Dissimilarity Measure

An obvious choice is to consider the discrepancy between the theoretical and empirical
Laplace transform

SEn(t) = L X
n (t) − L̂ X

0 (t), (27)

and integrate SE2
n(·) against the weight function w(t) as

Sn,w = n
∫ ∞

0
SE2

n(t)w(t)dt, (28)

where L̂ X
0 (t) = L X

0 (t; ϑ̂). Choosing the exponential weight function w(t) =
e−βt , β > 0, allows us to write the test statistic in (28) as

Sn,β = 1

n

n∑

i, j=1

1

Xi + X j + β
− 2

n∑

i=1

∫ ∞

0
L̂ X
0 (t)e−(Xi +β)tdt + n

∫ ∞

0

[
L̂ X
0 (t)

]2
e−βtdt .

(29)

Depending on the hypothesized LT, numerical integration may be required for the
evaluation. A classical work-around in LT-based GOF testing to avoid numerical
integration is to define a dissimilarity measure relying on a differential equation which
we discuss next. The issue of the choice of the weight parameter β is postponed to
Sect. 4.

3.2.2 Dissimilarity Measure Based on a Differential Equation

If under the null hypothesis, N ∼ KF(a, b) then the LT of X satisfies a differential
equation. Start by noting that

dG N (t) = a + b

1 − at
G N (t), (30)

where d f (t) denotes the first derivative of the function f with respect to t . Differen-
tiating with respect to t on both sides of (4) yields

dL X (t) = dLU (t)dG N
[

LU (t)
]
, t ≥ 0, (31)

and reinserting (30) into (31) leads to the following differential equation

dL X (t)
[
1 − aLU (t)

]
− (a + b)L X (t)dLU (t) = 0. (32)

Equation (32) motivates us to define a dissimilarity measure as

DEn(t) = dL X
n (t)

1 − â L̂U
0 (t)

dL̂U
0 (t)

− (̂a + b̂)L X
n (t), t ≥ 0, (33)
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where

dL X
n (t) = −1

n

n∑

i=1

Xi e
−t Xi , L̂U

0 (t) = LU
0 (t; ϑ̂U ) and dL̂U

0 (t) = dLU
0 (t; ϑ̂U ).

The corresponding test statistic (analogous to (28)) is defined by

Tn,w = n
∫ ∞

0
DE2

n(t)w(t)dt, (34)

with rejection for large values of Tn,w.
Letting w(t) = e−βt , β > 0 and by straightforward computations we have from

(34),

Tn,β = 1

n

n∑

i, j=1

Xi X j K (2)
β (Xi + X j ) + 1

n

n∑

i, j=1

Xi K (1)
β (Xi + X j )

+ (̂a + b̂)2

n

n∑

i, j=1

K (0)
β (Xi + X j ), (35)

where

K (k)
β (x) =

∫ ∞

0

[
1 − aL̂U

0 (t)

dL̂U
0 (t)

]k

e−(x+β)tw(t)dt, fork = 0, 1, 2. (36)

The exponential weight function e−βt , β > 0, allows us to derive tractable formu-
las when the claim sizes distribution is gamma or inverse Gaussian as shown in the
following example.

Example 3 First note that K (0)
β (x) = (x + β)−1.

1. LetU be gamma distributed Gamma(r , θ)with LT given by LU
0 (t) = (1 + θ t)−r .

We have that

K (1)
β (x) = a

(x + β + θ)

rθ(x + β)2
− e(x+β)/θ θr

r(x + β)r+2�u

(
r + 2; x + β

θ

)

and

K (2)
β (x) = e(x+β)/θ θ2r

r2(x + β)2r+3 �u

(
2r + 3; x + β

θ

)
− 2a

e(x+β)/θ θr

r2(x + β)r+3 �u

(
r + 3; x + β

θ

)

+ a2 (x2 + 2θx + 2θ2)

(rθ)2(x + β)3
,

where �u(r; x) = ∫ +∞
x yr−1e−ydy denotes the upper incomplete gamma func-

tion.
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2. Let U be inverse Gaussian distributed IG(μ, φ) with LT given by LU
0 (t) =

exp

(
1−

√
1+φμ2t
μφ

)
. Denote by c = √

2 x+β−μ

μ
√

φ(x+β)
and d = √

2 x+β−2μ
μ

√
φ(x+β)

. We

have that

K (1)
β (x) = a

√
φe

(x+β)

2μ2φ

(x + β)3/2

⎧
⎨

⎩
e
− (x+β)

2μ2φ
√

x + β

μ
√

φ
+ 1√

2
erfc

(√
2

x + β

μ2φ

)⎫⎬

⎭

+ ec2

μ2
√

(x + β)φ

{
μ2φ

x + β

[
c√
2

e−c2 + 1√
2
erfc (c)

]

+ 2μ2√φ

(x + β)3/2
e−c2 + μ2

(x + β)2
√
2
erfc(c)

}

and

K (2)
β (x) = 23ed2

(x + β)3
√

φ(x + β)

(
1√
2
erfc(d) + 3

√
φ(x + β)

2
e−d2

+ 3φ(x + β)

4

{
d√
2

e−d2 + 1√
2
erfc(d) +

√
φ(x + β)

2

d2 + 4

2
e−d2

})

− 2aec2
(

1√
2
erfc(c) + 3

√
φxe−c2

+ 3φx

{
c√
2

e−c2 + 1√
2
erfc(c)

}
+ [φ(x + β)]3/2 c2 + 4

2
e−c2

)

+ a2
(

1

μ2(x + β)
+ 2φ

(x + β)2

)
,

where erfc(x) = 2√
π

∫ +∞
x e−t2dt denotes the complementary error function.

Asymptotic results including the limit distribution of the LT-based test statistic
Sn,w under the null hypothesis are given in the Appendix. This distribution, as well
as the limit distributions corresponding to the other LT- or DF-based tests considered
here, is extremely complicated. Therefore, in the next section, we resort to resampling
techniques in order to obtain critical values and actually carry out the tests.

4 Simulation study

This section presents the result of a Monte Carlo experiment designed to assess the
power of theGOF procedures. In the first subsection, we investigate the impact of the
choice of the parameter β in the weight function on the performance of the LT-based
GOF procedures. In the second subsection, the DF- and LT-based GOF tests are
compared in terms of power. Parametric bootstrap resampling is used to approximate
the distribution of the test statistic under the null hypothesis. This type of resampling
has been set on a firm theoretical basis, see e.g., Stute et al. [34], Henze [19], and
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Genest and Rémillard [13], and is typically called upon when the asymptotic null
distribution of any given test is too complicated to apply in practice. For the sake of
completeness, the parametric bootstrap principle is recalled hereafter. Say we wish to
assess the fit of an iid sample X1, . . . , Xn of aggregated claim data to a parametric
model characterized by its DF F X

0 (x, ϑ). The parameter of the model is inferred as
ϑ̂ = ϑ̂(X1, . . . , Xn) and the test statistic TS ∈ {CMn,KSn, Sn,w, Tn,w} is computed.
Bootstrap samples are then drawn from F X

0 (x, ϑ̂). We compute the test statistic for
each one of the samples and the critical values follow from quantile estimation. The
steps of the parametric bootstrap routine are given in Algorithm 1 where B ∈ N

denotes the number of bootstrap samples and α ∈ (0, 1) is the confidence level of the
GOF test.

Algorithm 1 Parametric bootstrap for goodness-of-fit test
1: compute ϑ̂ := ϑ̂(X1, . . . , Xn)

2: compute TS.
3: for k = 1 → B do
4: simulate X∗

k,1, . . . , X∗
k,n from F X

0 (x, ϑ̂)

5: compute ϑ̂∗
k := ϑ̂(X∗

k,1, . . . , X∗
k,n)

6: compute TS∗
k

7: end for
8: compute T S∗

α := Quantile(TS∗
1, . . . ,TS

∗
B ; α)

9: if TS > T S∗
α then reject H0

10: else accept H0
11: end if

In the sequel, we study the probability of rejection of a sample generated by a fixed
model F X when the model tested is F X

0 (x, ϑ). It requires to generate M ∈ N samples
Xk,1, . . . , Xk,n, k = 1, . . . , M drawn from F X and apply Algorithm 1. The warp-
speed strategy suggested by Giacomini et al. [15] allows us to reduce the running
time required for our experiment. The idea is to generate only one bootstrap sample
from F X

0 for each Monte Carlo sample simulated from F X . The parametric bootstrap
routine augmented by the warp-speed strategy is provided in Algorithm 2.

Algorithm 2 Rejection probability via parametric bootstrap and warp-speed method
1: for k = 1 → M do
2: simulate Xk,1, . . . , Xk,n from F X

3: compute ϑ̂k := ϑ̂(Xk,1, . . . , Xk,n)

4: compute TSk
5: simulate X∗

k,1, . . . , X∗
k,n from F X

0 (x, ϑ̂)

6: compute ϑ̂∗
k := ϑ̂(X∗

k,1, . . . , X∗
k,n)

7: compute TS∗
k

8: end for
9: compute TS∗

α := Quantile(TS∗
1, . . . ,TS

∗
M ;α)

10: return The probability of rejection M−1∑M
k=1 ITSk>TS∗

α
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4.1 Investigation of the Impact of theWeight Function

The goal of this subsection is to investigate the role of the weight parameter β in
LT-based procedures and prompt the discussion for the choice of good values of this
parameter. It is well known from Tauberian theorems, see for instance Feller [12,
Chapter XIII.5] that the tail behavior of a probability distribution concentrated on
the positive half-line is reflected by the behavior of the Laplace transform at 0 and
vice-versa. It is especially true in our context, that for SEn(t) we have

SE2
n(t) →

[n0

n
− p̂N

0 (0)
]2

, as t → +∞.

Choosing small values of β leads to capturing a difference in the atom of probability
at 0, while choosing a large β allows to detect variations in the right tail. Note also
that opting for the partial-MME method will make the SEn(t) distance tend toward 0
for large values of t .

For further scrutiny on the role of the weight function and the weight parameter β,
we consider the discrepancy SE(t) in (27) and take the Taylor series expansion of the
exponential function figuring in the empirical Laplace transform therein. This leads
to

SE2
n(t) =

∞∑

k,�=1

(−t)k+�

k!�!
[
μ̂k − Ê0(Xk)

] [
μ̂� − Ê0(X�)

]
, (37)

where μ̂k = n−1∑n
k=1 Xk

i , k ≥ 1, denote the empirical moments of the sample
X1, . . . , Xn and Ê0(Xk) := E0(Xk; ϑ̂) is the estimate of the corresponding expecta-
tion of the aggregated claim size under H0 obtained by replacing ϑ by ϑ̂ . Integrating
(37) term-by-term against the exponential weight function w(t) = e−βt yields

Sn,β = n
∞∑

k,�=1

(
k + �

k

)
(−1)k+�

βk+�+1

[
μ̂k − Ê0(Xk)

] [
μ̂� − Ê0(X�)

]
. (38)

Thus, the weight function tunes how the difference between the empirical and theo-
retical moments enter the test statistic Sn,w. Namely, lowering the value of β allows
one to take into account higher order moments. This analysis holds too for the DEn(t)
distance with

DE2
n(t) =

+∞∑

k,�=1

(−t)k+�

k!�!

[
1

n

n∑

i=1

Qk+1(Xi )

][
1

n

n∑

i=1

Q�+1(Xi )

]
, (39)

where (Qk)k≥1 is a sequence of polynomials satisfying E0 [Qk(X)] = 0, for k ≥ 1.
The polynomial Qk(x) is of order k in x and its coefficients may be expressed in
terms of the parameters of the model specified under H0. For instance, if a compound
Poisson-exponential Pois(λ) − exp(θ) is assumed under H0 then we have that
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Fig. 1 Level of theLT-basedGOF test depending on the distance between Laplace transform and inference
techniques used: (dotted) Sn,β and MME ; (dashed) Sn,β and partial-MME; (solid) Tn,β and MME ;
(dotdash) Tn,β and partial-MME

Q1(x) = x − λ̂θ̂ , Q2(x) = x2 − (̂λ + 2)θ̂x, Q3(x) = x3 − θ̂ (̂λ + 4)x2 + 2θ̂2x, . . .

(40)

Integrating (39) term-by-term against the exponential weight function w(t) = e−βt

yields

Tn,β = n
∞∑

k,�=1

(
k + �

k

)
(−1)k+�

βk+�+1

[
1

n

n∑

i=1

Qk+1(Xi )

][
1

n

n∑

i=1

Q�+1(Xi )

]
. (41)

The value of β is calibrated to select the moments that will influence the test decision.
We note also that with moment estimation, Ê0(Xk) = μ̂k, k = 1, 2, so that the
corresponding terms in (38) and (41) vanish when choosing the Method of Moments
estimator.

A Monte Carlo experiment is further conducted to gain insight on how to choose
β to optimize the performance of the Laplace transform GOF procedures. We test
the adequacy of a compound Poisson-exponential model Pois(λ) − Exp(θ) to data
coming from a Poisson-gamma model Pois(λ = 1) − gamma(r , θ = 1). The
probability of rejection is computed when varying the value the shape parameter
r ∈ {0.5, 0.75, 1, 2, 4} for both of the Laplace transform-based procedures as well
as the two available inference methods (MME and partial-MME). We set the sample
size to n = 100 and use Algorithm 2 with M = 10, 000 Monte Carlo runs. Figure 1
displays the level (when r = 1) of the test for β ranging from 10−13 to 103.

The probability of rejection (expected to be around 5%) is too high when using
the Tn,β(t) statistic and too low when using the Sn,β when β < 10−7. The sampling
error on the parameter estimates might explain this fact as the variance is higher for
large integrated distance. Figure 2 displays the power (when r �= 1) of the tests. The
power of the test always decreases with β which reflects that the distance between the
Laplace transforms vanishes as t approaches 0. Two behaviors may be observed on
Fig. 2 depending on the value of r . When r < 1, the rejection probability increases
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Fig. 2 Power of theLT-basedGOF test for the different combinations of distances and inference techniques:
(dotted) Sn,β and MME ; (dashed) Sn,β and partial-MME; (solid) Tn,β and MME ; (dotdash) Tn,β and
partial-MME

before reaching a maximum and decreasing. When r > 1, the power admits a plateau
before decreasing. It is common in the goodness-of-fit testing literature to opt for the
values of β that fare well in the majority of the cases. In this connection, we note that
there exist data-driven selection methods to determine proper values of the parameter
β in LT-based goodness-of-fit tests, such as those proposed recently by Allison and
Santana [1] and Tenreiro [36]. However, given the computing time associated with
the test statistic, we decided not to implement such search methods here and employ
in the comparative study below the values β = 10−3, 10−2 when using the Sn,β and
β = 0.1, 1 when using the Sn,β , which performed well in our preliminary study.

4.2 Comparison of the GOF Procedures

In this subsection, we compare theGOF procedures in terms of probability of rejection
when the input samples differ from the model stated under the null hypothesis.

Test 1 In this first test, we generate samples from a Poisson-Weibull model Pois(λ =
1) − Weibull(r , θ = 1) and test with our GOF method the adequacy of a Poisson-
exponential, Poisson-gamma and Poisson-inverse Gaussian model. The Weibull
distribution Weibull(r , θ) admits a probability density function given by

f U (x) = r

θ

( x

θ

)r−1
exp
[
−
( x

θ

)r]
, for x > 0. (42)
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Fig. 3 Power of the variousGOF tests inTest 1: (dotted) Cramér-vonMises ; (dash) Kolmogorov-Smirnov;
(solid) Sn,β , β = 10−3 ; (dotdash) Sn,β , β = 10−2;(two dash) Tn,β , β = 0.1 ; (long dash) Tn,β , β = 1

We set the sample size to 100 and use the partial-MME to infer the parameters in
the model specified in H0. Figure 3 displays the powers computed via our parametric
bootstrap routine with10, 000Monte Carlo runs changing the shape parameter r in the
claim sizes distribution. The Poisson-Weibull coincides with the Poisson-exponential
and Poisson-gamma models when the shape parameter is set to 1 so the power tends
toward 5% on Figs. 3a and b as r gets closer to 1. The GOF procedures do well
when testing for a Poisson-exponential with very high power as r gets farther from
1, see Fig. 3a. The results are a bit disappointing when testing for a Poisson-gamma
distribution, the DF-based procedures achieve greater power in this case, see Fig. 3b.
The procedures associated with the Sn,β distance outperform greatly the other methods
when testing for a Poisson-inverse Gaussian model.

Test 2 In this second test, samples are generated from zero-modified Poisson-
exponential zmpois(λ = 5, p0) − exp(θ = 1) and mixed Poisson-exponential
mpois(p, λ1 = 1, λ2 = 5) − exp(θ = 1) and we assess the adequacy of a
Poisson-exponential model. The probability mass function of the zero-modified Poisson
distribution zmpois(λ, p0) is given by

pN (k) =
{

p0, for k = 0,
1−p0
1−e−λ

λk e−λ

k! , for k ≥ 1,
(43)
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Fig. 4 Power of the variousGOF tests inTest 2: (dotted) Cramer-vonMises ; (dash) Kolmogorov-Smirnov;
(solid) Sn,β , β = 10−3 ; (dotdash) Sn,β , β = 10−2; (two dash) Tn,β , β = 0.1 ; (long dash) Tn,β , β = 1

and the probability mass function of the mixed Poisson distribution mpois(p, λ1, λ2)

is given by

pN (k) = p
λk
1e−λ1

k! + (1 − p)
λk
2e−λ2

k! , for k ≥ 0. (44)

The Poisson-exponential under H0 is fitted using the MME based on samples of size
100. Figure 4 displays the probability of rejection are computed via our parametric
bootstrap routine with 10, 000 Monte Carlo runs letting the parameter p vary in the
alternative claim frequency distributions. The GOF procedures all detect reasonably
well the modification at 0, see Fig. 4a. The Laplace transform-based techniques out-
perform the DF-based one in the mixed Poisson example, see Fig. 4b. The probability
of rejection computed remain relatively small. The shape of the power is on the low
side when p is close to 0 or 1 which makes sense since the Mixed Poisson distribu-
tion is then very close to a Poisson distribution. The downfall at 0.5 indicates that a
balanced mixture of two Poisson random variables may be approximated well by one
Poisson random variable.

Other cases have been studied, the simulation data may be found in the online
supplements [17]. The main conclusion is that none of the procedures stands out in
all and every case. This conclusion is corroborated by analytic methods which lead to
the conclusion that any given goodness-of-fit test has nontrivial power only towards a
given direction away from the null hypothesis; see Janssen [22], and Escanciano [11].
Therefore, we suggest, in a practical situation, to apply all the procedures to see if
they lead to the same conclusion.

5 An Application to Insurance Data

We illustrate our inference and goodness-of-fit procedures on an actuarial dataset
called itamtplcost accessible from the R package CASdatasets (see also the
book of Charpentier [5]). This dataset contains losses (in excess of 500, 000 euros)
of an Italian Motor-TPL company since 1997. It comprises two variables Date and
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Table 1 The first five
observations from the dataset
itamtplcost

Date Claim size

08/01/1997 726,986.95

02/03/1997 1,222,682.37

18/03/1997 428,543.10

07/04/1997 258,786.06

11/04/1997 637,117.61
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(a) Q-Q plot to test the adequacy to the exponential
distribution.
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(b) Q-Q plot to assess the adequacy to the Pareto
distribution.

Fig. 5 Quantile-Quantile Plots

UltimateCost, and 457 observations. Table 1 shows the first 5 observations of
the dataset itamtplcost. We start by looking at the individual claim data before
applying our methods to the monthly aggregated data, in the hope that they lead to
similar inference and conclusions.

Figure 5 displays the exponential and Pareto Quantile-Quantile plots. A linear
relationship is observed between the lower order quantiles on Fig. 5a and between the
higher order quantiles on Fig. 5b. This, in turn, suggests the use of a splicing model
with an exponential-type distribution to model the small claims and a Pareto-type
distribution to fit the larger losses. The claim sizes distribution tested in the sequel are
the exponential, gamma and inverse Gaussian distributions. Due to the heavy tail of
the data, these distributions are not likely to result in a good fit. Hence, we decided
to conduct the analysis over the whole dataset and then on the smaller claims only.
The small claims are defined on the basis of a threshold. The cut-off point between
small and large claims is the upper order statistic that minimizes the asymptotic mean
squared error of the Hill estimator, as it is a standard procedure in extreme value
theory; see for instance the case study in the book by Beirlant et al. [3, Chapter 6].
Figure 6 displays the mean-excess plot and the Hill plot of the loss data. The threshold
is set at 1, 766, 751 euros (corresponding to the vertical line on Figs. 6a and b). A
statistical summary over the whole dataset and the small claims is provided in Table 2.
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Fig. 6 Mean-Excess plot and Hill plot

We note the swift decrease in variance when considering the small claims solely. The
quartiles are stable while the mean in the small claims subset decreases to get closer
to the median. Table 3 reports the Method of Moments estimators of the parameters
of the exponential, gamma and inverse Gaussian distribution. Figure 7 displays the
histograms of the claim sizes, onwhich are superposed the densities of the exponential,
gamma and inverse Gaussian distributions with the parameters provided in Table 3.
Table 4 reports the value of the AIC as well as the outcome of theKS and CvMGOF
test for the exponential, gamma and inverse Gaussian distributions. On the basis of
these results, it seems that the gamma is the single distribution that provides a better
fit for both of the datasets. We note how the rejection when using the KS GOF test
is a close call when testing the gamma and inverse Gaussian model for the small
claims. In order to apply our method, the original data need to be processed so as to
consider claim amounts aggregatedmonthly. For each time period,we collect the claim
frequency as well as the sums of the incurred claims. Table 5 provides an overview
of the processed data. Table 6 reports the estimated parameters of the Poisson and
geometric distributions accompanied by the Akaike information criterion and the χ2

distance. The Poisson is better suited than the geometric distribution in view of the
lower χ2 distance and AIC values.

Table 7 gives the partial-MMEs for the Poisson-exponential, Poisson-gamma,
Poisson-inverse Gaussian and geometric-exponential compound models. We note that
these values are very different from the values estimated via the individual claim sizes
and frequency data given in Tables 3 and 6. Tables 8, 9 and 10 provide a summary
of the GOF procedures applied on the data. The critical values are computed using
Algorithm 1 with 10, 000 bootstrap loops. The Poisson-gamma and Poisson-Inverse
Gaussian models cannot be discarded according to all the methods. The exponential
claim sizes are discarded for all the methods except when using the Sn,β test statistic
based on the Laplace transform, see Table 8.
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Table 2 Descriptive statistics of
the claim data

Overall Small claims

No of observations 457 408

E(U) 1, 015, 352.15 837, 255.78

St.Dev(U) 680, 742.00 371, 646.54

Skewness(U) 2.55 0.22

Kurtosis(U) 12.65 -0.35

Minimum 2, 160.73 2, 160.73

Maximum 6, 639, 499.57 1, 764, 900.46

Q1 627, 718.53 595, 464.36

Median 844, 010.92 790, 992.29

Q3 1, 224, 316.09 1, 066, 904.00

Table 3 Estimated parameters for the exponential and gamma distributions

Model Parameters Overall Small claims

Exponential Scale 1, 015, 352.15 837, 255.78

Gamma Shape 2.23 5.09

Scale 455, 404.21 164, 564.55

Inverse Gaussian Mean 1, 015, 352.15 837, 255.78

Dispersion 4.42E-07 2.35E-07
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(a) Histogram of the claim sizes.
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(b) Histogram of the small claim sizes.

Fig. 7 Histograms of the data along with the density of the exponential (solid), gamma (dotted) and inverse
Gaussian (dashed) distributions
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Table 4 Measure of the adequacy of the exponential and the gamma distributions

Data Model AIC KS CvM

Value Critical value Value Critical value

Overall Exponential 13, 557.30 0.24 0.05 7.79 0.22

Gamma 13, 403.02 0.10 0.04 1.06 0.15

Inverse Gaussian 15, 498.63 0.08 0.05 0.58 0.21

Small claims Exponential 11, 946.51 0.28 0.05 10.97 0.22

Gamma 11, 765.60 0.05 0.04 0.24 0.13

Inverse Gaussian 13, 859.68 0.07 0.05 0.62 0.15

Bold values indicate the highest value between value and critical value

Table 5 Monthly aggregated
data

Time period Claim frequency Total claim size

01/1997 1 726, 986.95

02/1997 0 0.00

03/1997 2 1, 651, 225.47

04/1997 2 895, 903.67

05/1997 0 0.00

Table 6 Inference and measure of adequacy of the Poisson and geometric distribution over the claim
frequency data

Data Model Parameters χ2 Distance AIC

Overall Poisson λ̂ = 2.38 15.17 752.79

Geometric p̂ = 0.70 45.42 790.27

Small claims Poisson λ̂ = 1.93 17.14 705.48

Geometric p̂ = 0.66 32.67 724.57

Table 7 Inference and measure of adequacy of the Poisson and geometric distribution over the claim
frequency data

Model Overall Small claims

Poisson-exponential λ̂ = 2.42 2.52

θ̂ = 999, 750.14 630, 059.684

Poisson-gamma λ̂ = 1.86 1.52

r̂ = 1.89 5.03

θ̂ = 687, 167.20 207, 806.41

Poisson-inverse Gaussian λ̂ = 1.86 1.37

μ̂ = 1, 301, 919.02 1, 058, 724.32

φ̂ = 4.05E-07 1.90E-07

geometric-exponential p̂ = 0.84 0.78

θ̂ = 447, 546.23 445, 020.10
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Table 8 Summary of the Laplace transform-based GOF procedures using the Sn,β statistic

Data Model β = 10−3 β = 10−2

Value Critical value Value Critical value

Overall Geometric-exp 2.13E+01 2.44E+01 2.12E+01 2.45E+01

Poisson-exp 3.62E+00 2.61E+00 3.21E+00 1.41E+00

Poisson-gamma 4.63E-02 4.47E-01 4.50E-02 3.75E-01

Poisson-inverse Gaussian 2.53E-02 1.64E-01 2.27E-02 1.58E-01

Small claims Geometric-exp 2.56E+01 2.74E+01 2.53E+01 2.72E+01

Poisson-exp 6.39E+00 2.81E+00 5.80E+00 1.52E+00

Poisson-gamma 5.30E-03 4.66E-02 5.22E-03 4.90E-02

Poisson-inverse Gaussian 5.13E-02 8.06E-02 4.81E-02 8.15E-02

Bold values indicate the highest value between value and critical value

Table 9 Summary of the Laplace transform-based GOF procedures using the Tn,β statistic

Data Model β = 10−3 β = 10−2

Value Critical value Value Critical value

Overall Geometric-exp 1.97E+01 9.49E+00 1.01E+00 1.95E-01

Poisson-exp 4.61E+01 2.04E+01 2.90E+00 9.97E-01

Poisson-gamma 1.43E+01 7.89E+03 1.45E-01 2.75E+00

Poisson-inverse Gaussian 1.24E+04 1.90E+03 8.94E-03 2.62E-01

Small claims Geometric-exp 3.62E+01 1.20E+01 1.87E+00 2.08E-01

Poisson-exp 8.94E+01 2.19E+01 5.49E+00 7.72E-01

Poisson-gamma 4.05E+04 1.51E+07 5.26E+01 1.33E+06

Poisson-inverse Gaussian 1.72E+10 7.53E+05 3.34E-02 1.41E+00

Bold values indicate the highest value between value and critical value

Table 10 Summary of the DF-based GOF procedures

Data Model KS CvM

Value Critical value Value Critical value

Overall Geometric-exp 1.30E-01 7.20E-02 5.27E-03 1.14E-03

Poisson-exp 9.88E-02 7.08E-02 2.13E-03 1.12E-03

Poisson-gamma 4.32E-02 6.08E-02 2.66E-04 7.96E-04

Poisson-inverse Gaussian 3.16E-02 6.05E-02 2.23E-04 7.74E-04

Small claims Geometric-exp 1.69E-01 6.91E-02 9.29E-03 1.16E-03

Poisson-exp 1.45E-01 6.77E-02 5.99E-03 1.09E-03

Poisson-gamma 3.17E-02 7.20E-02 2.01E-04 1.19E-03

Poisson-inverse Gaussian 3.09E-02 7.21E-02 2.09E-04 1.17E-03

Bold values indicate the highest value between value and critical value

123



52 Page 24 of 28 Journal of Statistical Theory and Practice (2022) 16 :52

6 Conclusion and Perspectives

Several goodness-of-fit tests for compound distributions were investigated, both clas-
sical as well as tests based on the Laplace transform. In either case, the test criteria
were tailored to specific versions of the null hypothesis that are popular in applications.
The message drawn from a detailed Monte Carlo study is that all criteria respect the
nominal level of the test and at the same time have reasonable power against some
interesting alternatives, with the Laplace transform-based test having a certain edge in
terms of power. The real-data application shows the potential of the suggested meth-
ods for practitioners in order to also identify the components of an aggregate claim
probability distribution, namely the claim frequency and the claim size distribution,
when the only available data are the aggregated losses.

There are clearly several possible directions in which the current results can be
extended. For instance, one can explore alternate estimation methods for the param-
eters, go outside the Katz family for counting models, or consider situations where
multivariate data are available on the compound variable X .
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Appendix: Consistency and Limit Null Distribution

In this section, we discuss the consistency and limiting distribution of the LT-based
test statistics under the null hypothesis H0. We focus our attention on the test criterion
Sn,w defined in (28), but note that similar results may be obtained for the test statistic
Tn,w. We begin with the consistency of the test based on Sn,w under the following
assumptions:

(A.1) The estimator satisfies ϑ̂ → ϑ̃ , a.s., as n → ∞, for some ϑ̃ ∈ �, with ϑ̃ ≡ ϑ0
when the null hypothesis H0 is true, with ϑ0 being the true value.

(A.2) The LT L X
0 (·;ϑ) is continuous in ϑ .

(A.3) The weight function satisfies,

(i) w(t) > 0,∀t > 0, except for a set of measure zero,
(ii)

∫∞
0 w(t)dt < ∞.

Theorem 1 Let L X (t) denote the LT of X. Then if assumptions (A.1) to (A.3) are
satisfied,

Sn,w

n
→
∫ ∞

0

(
L X (t) − L X

0 (t; ϑ̃)
)2

w(t)dt, (45)

a.s., as n → ∞.
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Proof : Clearly the strong consistency of the empirical Laplace transform and the
continuity of L0(·;ϑ) imply that

SEn → L X (t) − L X
0 (t; ϑ̃),

a.s., as n → ∞. Then since SE2
n(t) ≤ 4, the result follows by Lebesgue’s dominated

convergence theorem. 
�
The right-hand side of (45) is positive unless L X (t) = L X

0 (t; ϑ̃), for all t > 0.
However, by the uniqueness of the LT, the last identity holds true only under the null
hypothesis H0, in which case ϑ̃ ≡ ϑ0, thus implying the strong consistency of the test
that rejects H0 for large values of Sn,w.

We continue with the limit distribution of the test statistic Sn,w under the null
hypothesis H0. For simplicity, we assume that ϑ is a scalar parameter. To this end
assume that

(A.4) The estimator ϑ̂ := ϑ̂n satisfies the Bahadur representation

ϑ̂n − ϑ0 = 1

n

n∑

j=1

�(X j ;ϑ0) + oP (1)

where �(·; ·) are such that E(�(X;ϑ0)) = 0 and E(�2(X;ϑ0)) < ∞.
(A.5) The LT L X

0 (t;ϑ) is twice differentiable with respect to ϑ with a continuous
second derivative in the neighborhood of the true value ϑ0.

(A.6) The weight function is such that

∫ ∞

0

(
∂L X

0 (t;ϑ0)

∂ϑ

)2

w(t)dt < ∞,

and

∫ ∞

0

(
∂2L X

0 (t;ϑ)

∂ϑ2

)2

ϑ=ϑ∗
w(t)dt < ∞,

for all ϑ∗ in a neighborhood of ϑ0.

Theorem 2 Under assumptions (A.1) to (A.6) we have under H0,

Zn(t) = √
n(L X

n (t) − L X
0 (t; ϑ̂n))

L−→ Z(t),

as n → ∞, where Z(t) is the zero-mean Gaussian process with covariance kernel
K (s, t;ϑ0) = E(Y (t;ϑ0)Y (s;ϑ0)) with

Y (t;ϑ) = e−t X − L X
0 (t;ϑ) − ∂L X

0 (t;ϑ)

∂ϑ
�(X;ϑ).
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The covariance kernel is specified by

K (s, t;ϑ) = L X
0 (t + s, ϑ) − L X

0 (t;ϑ)L X
0 (s;ϑ)

− ∂L X
0 (s;ϑ)

∂ϑ
E

(
e−t X�(X;ϑ)

)
− ∂L X

0 (t;ϑ)

∂ϑ
E

(
e−s X , �(X;ϑ)

)

+ ∂L X
0 (s;ϑ)

∂ϑ

∂L X
0 (t;ϑ)

∂ϑ
E(�2(X;ϑ)).

Proof : Along the proof we will write Z (1)
n ≈ Z (2)

n if the two random processes
(Z (k)

n (t), k = 1, 2), satisfy Z (1)
n (t) − Z (2)

n (t) = εn(t), and the remainder εn(t) is such
that it has no effect on the limit null distribution of the test statistic Sn,w.

With this understanding using assumption (A.5) and the second part of (A.6), a
two-term Taylor expansion yields

Zn ≈ Z∗
n ,

where

Z∗
n(t) = √

n
(

L X
n (t) − L X

0 (t;ϑ0)
)

− √
n
(
ϑ̂n − ϑ0

) ∂L X
0 (t;ϑ0)

∂ϑ
. (46)

In turn, using assumption (A.4) and the first part of (A.6) in (46) leads to

Z∗
n ≈ Z∗∗

n ,

where

Z∗∗
n (t) = √

n
(

L X
n (t) − L X

0 (t;ϑ0)
)

− ∂L X
0 (t;ϑ0)

∂ϑ

1√
n

n∑

j=1

�(X j ;ϑ0). (47)

The result now follows by applying the Central Limit Theorem in Hilbert spaces, (see
e.g. van der Vaart and Wellner [38], p. 50) on the process Z∗∗

n (t) given in (47). 
�
Now the limit distribution of the test statistic follows from Theorem 2 and the

Continuous Mapping theorem. Specifically we have

Sn,w =
∫ ∞

0
Z2

n(t)w(t)dt
L−→
∫ ∞

0
Z2(t)w(t)dt := Zw

where Z(t) is the process defined in Theorem 2. The distribution of Zw is the same as
that of

∑∞
j=1 λ j N 2

j , where λ1, λ2, ..., are the eigenvalues corresponding to the integral
operator

Ag(s) =
∫ ∞

0
K (s, t)g(t)w(t)dt,
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i.e. the solutions of the equation Ag(s) = λg(s), and where N j , j ≥ 1, are iid
standard normal variates.

Remark 71 The assumptions (A.1)–(A.3)made in order to prove consistency, aswell as
those pertaining to the limit null distribution, (A.4)–(A.6), are standard in the context
of testing goodness-of-fit based on the empirical LT; see for instance Henze [18],
Henze and Klar [20], and Henze and Meintanis [21].
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